Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 669: 518-528, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723540

RESUMO

Supercapacitors have the advantages of fast charging and discharging speeds, high power density, long cycle life, and wide operating temperature range. They are widely used in portable electronic equipment, rail transit, industry, military, aerospace, and other fields. The design and preparation of low-cost, high-performance electrode materials still pose a bottleneck that hinders the development of supercapacitors. In this paper, coal was used as the raw material, and the coal-based porous carbon electrode material was constructed using the iodine intercalation-assisted activation method and used for supercapacitors. The CK-700 electrode exhibits excellent charge storage performance in a 6 M potassium hydroxide (KOH) electrolyte, with a maximum specific capacitance of 350 F/g at a current density of 0.5 A/g. In addition, it has an excellent rate performance (310 F/g at 1 A/g) and cycle stability (capacitance retention up to 91.7 % after 30000 cycles). This work provides a method for realizing high-quality, high-yield and low-cost preparation of coal-based porous carbon, and an idea for improving the performance of supercapacitors.

2.
ChemSusChem ; : e202400732, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661456

RESUMO

Covalent organic frameworks (COFs) and their applications in photocatalysis have been extensively studied, but the instability of imine-linked COFs is an important factor limiting their performance. In this work, two imine-linked COFs were successfully converted to amide-linked COFs through post synthetic modification (PSM). The oxidized COFs presented lower binding energy to O2, exhibited higher photocatalytic activity for oxidation of thioethers and coupling of benzylamines with excellent stability. The present work can serve as a reliable reference for the development of novel highly active and stable COF-based photocatalysts.

3.
J Colloid Interface Sci ; 663: 847-855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447399

RESUMO

Properly design and manufacture of bifunctional electrocatalysts with superb performance and endurance are crucial for overall water splitting. The interfacial engineering strategy is acknowledged as a promising approach to enhance catalytic performance of overall water splitting catalysts. Herein, the Ru nanoparticles modified Ni3Se4/Ni(OH)2 heterostructured nanosheets catalyst was constructed using a simple two-step hydrothermal process. The experimental results demonstrate that the abundant heterointerfaces between Ru and Ni3Se4/Ni(OH)2 can increase the number of active sites and effectively regulate the electronic structure, greatly accelerating the kinetics of the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER). As a result, the Ru/Ni3Se4/Ni(OH)2/NF catalyst exhibits the low overpotential of 102.8 mV and 334.5 mV at 100 mA cm-2 for HER and OER in alkaline medium, respectively. Furthermore, a two-electrode system composed of the Ru/Ni3Se4/Ni(OH)2/NF requires a battery voltage of just 1.51 V at 10 mA cm-2 and remains stable for 200 h at 500 mA cm-2. This work provides an effective strategy for constructing Ru-based heterostructured catalysts with excellent catalytic activity.

4.
Small ; 20(14): e2307999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37972271

RESUMO

Zn-air battery (ZAB) is advocated as a more viable option in the new-energy technology. However, the limited-output capacity at a high current density impedes the driving range in power batteries substantially. Here, a novel heterojunction-based graphdiyne (GDY) and Ag29Cu7 alloy quantum dots (Ag29Cu7 QDs/GDY) for constructing a high-performance aqueous ZAB are fabricated. The as-fabricated ZAB achieves discharge at up to 100 mA cm-2 (the highest value ever reported) along with a remarkable output specific capacity of 786.2 mAh g-1 Zn, which is mainly benefitted from the binary-synergistic effect toward a stable triple-phase interface for air electrode induced by the Ag29Cu7 QDs and GDY in harsh base, together with the decreasing reaction energy barrier and polarization. The results outperform the superior reports discharging at low current and will bring breakthrough progress toward the practical applications of ZAB on large power supply facilities.

5.
ACS Nano ; 17(20): 20325-20333, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37830495

RESUMO

Potassium (K) metal is considered one of the most promising anodes for potassium metal batteries (PMBs) because of its abundant and low-cost advantages but suffers from serious dendritic growth and parasitic reactions, resulting in poor cyclability, low Coulombic efficiency (CE), and safety concerns. In this work, we report a localized high-concentration electrolyte (LHCE) consisting of potassium bis(fluorosulfonyl)imide (KFSI) in a cosolvent of 1,2-dimethoxyethane (DME) and 1,1,2,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) to solve the problems of PMBs. TTE as a diluent not only endows LHCE with advantages of low viscosity, good wettability, and improved conductivity but also solves the dendrite problem pertaining to K metal anodes. Using the formulation of LHCE, a CE of 98% during 800 cycles in the K||Cu cell and extremely stable cycling of over 2000 h in the K||K symmetric cell are achieved at a current density of 0.1 mA cm-2. In addition, the LHCE shows good compatibility with a Prussian Blue cathode, allowing almost 99% CE for the K||KFeIIFeIII(CN)6 full cell during 100 cycles. This promising electrolyte design realizes high-safety and energy-dense PMBs.

6.
J Colloid Interface Sci ; 650(Pt B): 1086-1096, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37463534

RESUMO

It is very important to develop transition metal-based electrocatalysts with excellent activity, high stability and low-cost for overall water splitting. In this work, the Fe-doped NixSy/NF amorphous/crystalline heterostructure nanoarrays (Fe-NixSy/NF) was synthesized by a simple one-step method. The resulting hierarchically structured nanoarrays offer the advantages of large surface area, high structural void fraction and accessible internal surfaces. These advantages not only furnish additional catalytically active sites, but also enhance the stability of the structure and effectively accelerate mass diffusion and charge transport. Experimental and characterization results indicate that Fe doping increases the electrical conductivity of amorphous/crystalline NixSy/NF, and the NiS-Ni3S2 heterojunctions evoke interfacial charge rearrangement and optimize the adsorption free energy of the intermediates, which allows the catalyst to exhibit low overpotential and superior electrocatalytic activity. Especially, the overpotentials of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) of Fe-NixSy/NF at 10 mA cm-2 in an alkaline environment are 102.4 and 230.5 mV, respectively. When applied as a bifunctional catalyst for overall water splitting, it requires only 1.45 V cell voltage to deliver a current density of 10 mA cm-2, which is preferable to the all-noble metal Pt/C || IrO2 electrocatalyst (1.62 mV @ 10 mA cm-2). In addition, Fe-NixSy/NF has excellent stability, and there is no obvious degradation after 96 h continuous operation at a current density of 100 mA cm-2. This work affords insights into the application of doping strategies and crystalline/amorphous synergistic modulation of the electrocatalytic activity of transition metal-based catalysts in energy conversion systems.

7.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049642

RESUMO

The rational design of morphology and structure for oxygen reduction reaction (ORR) catalysts still remains a critical challenge. Herein, we successfully construct defect-rich and hierarchically porous Fe-N-C nanosheets (Fe-N-CNSs), by taking advantage of metal-organic complexation and a mesoporous template. Benefiting from the advantages of high density of active sites, fast mass transfer channels, and sufficient reaction area, the optimal Fe-N-CNSs demonstrate satisfactory ORR activity with an excellent half-wave potential of up to 0.87 V, desirable durability, and robust methanol tolerance. Noteworthy, the Fe-N-CNSs based zinc-air battery shows significant performance with a peak power density of 128.20 mW cm-2 and open circuit voltage of 1.53 V, which reveals that the Fe-N-CNSs catalysts present promising practical application prospects. Therefore, we believe that this research will provide guidance for the optimization of Fe-N-C materials.

8.
Small Methods ; 6(9): e2200483, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35869613

RESUMO

Synergistic electronic modulations is an effective strategy to develop efficient and stable electrocatalysts for the electrochemical hydrogen production via water splitting. Herein, tremella-like Ni3 S2 @RuO2 and Ni3 S2 @NiFeOOH heterostructures catalysts are constructed on Ni foams (NF) by coupling RuO2 and NiFeOOH on Ni3 S2 nanoflake arrays. The resulting Ni3 S2 @RuO2 /NF electrode exhibits top-level hydrogen evolution reaction electrocatalysis with an extremely low overpotential of 12 mV at 10 mA cm-2 and a Tafel slope of 30.7 mV dec-1 , as well as the as-obtained Ni3 S2 @NiFeOOH/NF electrode with tunable binding energy for OH* intermediates shows remarkable oxygen evolution reaction electrocatalysis with an overpotential of 227 mV at 10 mA cm-2 . The electrolyzer employing Ni3 S2 @RuO2 /NF electrode for cathodic H2 production and Ni3 S2 @NiFeOOH/NF for anodic O2 production merely needs a low voltage of 1.47 V to drive 10 mA cm-2 with excellent durability. The combined theoretical calculation and X-ray photoelectron spectroscopy investigation reveal that heterogeneous configuration can induce electron transfer from Ni3 S2 to RuO2 through NiRu/SRu bonds, and thus tailor the d-band center and optimize the activated H2 O/H* Gibbs free energies for enhanced hydrogen evolution reaction on Ni3 S2 @RuO2 . This study may shed new light on the construction of heterostructures as highest-performing electrocatalysts and offer unique insight into the theory mechanism.

9.
Small ; 17(12): e2006442, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33656271

RESUMO

Carbon-supported metal nanocatalysts have received substantial attention for heterogeneous catalysis in industry. Hunting for suitable and impactful carbon supports that have strong interactions with metal nanocatalyst is a matter of great urgency. Herein, a well-designed graphdiyne layer decorated on the carbon nanotubes sidewalls (CNT@GDY) serves as a novel carbon support. This unique hybrid structure effectively traps platinum and palladium atomic clusters (Pt/Pd-ACs) with dimensions of 0.65 nm and 1.05 nm uniformly and firmly, forming novel carbon-supported metal nanocatalysts (Pt(Pd)-ACs/CNT @ GDY) for efficient hydrogen generation and aromatic nitroreduction, respectively. The Pt-ACs/CNT@GDY can deliver an HER current density of 10 mA cm-2 with a small overpotential of 23 mV in 0.5 M H2 SO4 , showing a greatly enhanced mass activity, intrinsic activity than the commercial Pt/C catalyst. The Pd-ACs/CNT@GDY also exhibits excellent catalytic activity and a high turnover frequency of 38.0 min-1 for aromatic nitroreduction. The carbon support turns out to possess excellent conductivity, abundant and uniform reactive sites, low redox potential, more negative surface and large specific surface area as well as a strong interaction with ACs, as anticipated in ideal supports, which can be applied in other metal-supported catalysts.

10.
J Colloid Interface Sci ; 586: 371-380, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33162046

RESUMO

Commercial graphite with low theoretical capacity cannot meet the ever-increasing requirement demands of lithium-ion batteries (LIBs) caused by the rapid development of electric devices. Rationally designed carbon-based nanomaterials can provide a wide range of possibilities to meet the growing requirements of energy storage. Hence, the porous walnut anchored on carbon fibers with reasonable pore structure, N-self doping (10.2 at%) and novel structure and morphology is designed via interaction of inner layer polyethylene oxide and outer layer polyacrylonitrile and polyvinylpyrrolidone during pyrolysis of the obtained precursor, which is fabricated by coaxial electrospinning. As an electrode material, the as-made sample shows a high discharge capacity of 965.3 mA h g-1 at 0.2 A g-1 in the first cycle, retains a capacity of 819.7 mA h g-1 after 500 cycles, and displays excellent cycling stability (475.2 mA h g-1 at 1 A g-1 after 1000 cycles). Moreover, the capacity of the electrode material still keeps 260.5 mA h g-1 at 5 A g-1 after 1000 cycles. Therefore, the obtained sample has a bright application prospect as a high performance anode material for LIBs. Besides, this design idea paves the way for situ N-enriched carbon material with novel structure and morphology by coaxial electrospinning.

11.
Sci Rep ; 10(1): 7022, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341401

RESUMO

Coal-based 3D hierarchical porous carbon aerogels (3D HPCAs) has been successfully fabricated from a freeze-drying method and with subsequent of calcination process, using coal oxide as carbon precursors, and PVA as both cross-linking agent and sacrifice template. The 3D HPCAs, using as electrode materials for supercapacitors, display outstanding electrochemical performance. The optimal sample (HPCAs-0.4-800) presents a high specific capacitance of 260 F g-1 at 1 A g-1, and exhibits considerable rate capability with the retention of 81% at 10 A g-1. Notably, HPCAs-0.4-800 shows an excellent cycling stability with 105% of the capacitance retention after 50000 cycles at 10 A g-1, attributing to its unique hierarchical porosity, high surface area up to 1303 m2 g-1, and improved conductivity. This work offers a promising route to synthesize coal-based porous carbon aerogels electrode materials for supercapacitors.

12.
RSC Adv ; 10(19): 11033-11038, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495344

RESUMO

N/S co-doped porous carbon spheres (NSPCSs) were prepared by a simple ultrasonic spray pyrolysis (USP) using the mixed solution of coal oxide and l-cysteine, and without a subsequent activation process. The surface properties of carbon materials have been successfully modified by the concurrent incorporation of N and S. So the capacitive performance of NSPCSs was greatly enhanced. It is used as a supercapacitor electrode to achieve a high specific capacitance of 308 F g-1 at a current density of 1 A g-1 and 90.2% capacitance retention even after 10 000 cycles at 5 A g-1. These numerical results show that the supercapacitors based on coal-based carbon materials have great potential in high performance electrochemical energy storage.

13.
Sensors (Basel) ; 20(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881692

RESUMO

Inspired by the enhanced gas-sensing performance by the one-dimensional hierarchical structure, one-dimensional hierarchical polyaniline/multi-walled carbon nanotubes (PANI/CNT) fibers were prepared. Interestingly, the simple heating changed the sensing characteristics of PANI from p-type to n-type and n-type PANI and p-type CNTs form p-n hetero junctions at the core-shell interface of hierarchical PANI/CNT composites. The p-type PANI/CNT (p-PANI/CNT) and n-type PANI/CNT (n-PANI/CNT) performed the higher sensitivity to NO2 and NH3, respectively. The response times of p-PANI/CNT and n-PANI/CNT to 50 ppm of NO2 and NH3 are only 5.2 and 1.8 s, respectively, showing the real-time response. The estimated limit of detection for NO2 and NH3 is as low as to 16.7 and 6.4 ppb, respectively. After three months, the responses of p-PANI/CNT and n-PANI/CNT decreased by 19.1% and 11.3%, respectively. It was found that one-dimensional hierarchical structures and the deeper charge depletion layer enhanced by structural changes of PANI contributed to the sensitive and fast responses to NH3 and NO2. The formation process of the hierarchical PANI/CNT fibers, p-n transition, and the enhanced gas-sensing performance were systematically analyzed. This work also predicts the development prospects of cost-effective, high-performance PANI/CNT-based sensors.

14.
RSC Adv ; 9(11): 6184-6192, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35517294

RESUMO

A green method is designed to obtain hierarchical porous carbon nanofibers from coal. In the work, deionized water, coal, polyvinyl alcohol and Pluronic F127 are used as the aqueous solution, carbon source, spinning assistant and soft template for spinning, respectively. As electrode materials for supercapacitors, the obtained hierarchical porous carbon nanofibers exhibit a high specific capacitance of 265.2 F g-1 at 1.0 A g-1 in 6 M KOH, a good rate performance with a capacitance of 220.3 F g-1 at 20.0 A g-1 with the retention of 83.1% and a superior cycle stability without capacitance loss after 20 000 charge/discharge cycles at 10.0 A g-1. Compared with the carbon nanofibers constructed without Pluronic F127, the enhanced electrochemical performance of the sample benefits from a larger contact surface area and the mesoporous structure formed by decomposition of Pluronic F127 and good structural stability. This work not only provides a green route for high-value utilization of coal in energy storage, but also paves a new way to make hierarchical porous carbon nanofibers from coal for supercapacitor electrodes with high specific capacitance and long cycle life.

15.
Nanomaterials (Basel) ; 8(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360577

RESUMO

Picric acid (PA) is an organic substance widely used in industry and military, which poses a great threat to the environment and security due to its unstable, toxic, and explosive properties. Trace detection of PA is also a challenging task because of its highly acidic and anionic character. In this work, silver nanoparticles (AgNPs)-decorated porous silicon photonic crystals (PS PCs) were controllably prepared as surface-enhanced Raman scattering (SERS) substrates using the immersion plating solution. PA and Rhodamine 6G dye (R6G) were used as the analyte to explore the detection performance. As compared with single layer porous silicon, the enhancement factor of PS PCs substrates is increased to 3.58 times at the concentration of 10-6 mol/L (R6G). This additional enhancement was greatly beneficial to the trace-amount-detection of target molecules. Under the optimized assay condition, the platform shows a distinguished sensitivity with the limit of detection of PA as low as 10-8 mol/L, the linear range from 10-4 to 10-7 mol/L, and a decent reproducibility with a relative standard deviation (RSD) of ca. 8%. These results show that the AgNPs-modified PS PCs substrates could also find further applications in biomedical and environmental sensing.

16.
Sensors (Basel) ; 18(9)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200342

RESUMO

Novel Ni-doped wurtzite ZnS nanospheres decorated with Au nanoparticles (Au NPs⁻ZnS NSs) have been successfully fabricated using a simple method involving vacuum evaporation followed by an annealing process. This transition metal-doped gas sensor had high responsivity, extremely fast response and recovery time, and excellent selectivity to formaldehyde at room temperature. The response and recovery time are only 29 s and 2 s, respectively. Since ZnS is transformed into ZnO at a high temperature, superior room temperature-sensing performance can improve the stability and service life of the sensor. The improvement in sensing performance could be attributed to the reduced charge-transfer distance resulting from the creation of a local charge reservoir layer, and the catalytic and spillover effect of Au nanoparticles. The rough and porous spherical structure can also facilitate the detection and diffusion of gases. The as-prepared Au NPs⁻ZnS NSs are considered to be an extremely promising candidate material for gas sensors, and are expected to have other potential applications in the future.

17.
Chem Sci ; 9(23): 5270-5277, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29997882

RESUMO

A novel single organic molecule-carborane conjugate, CAN, was synthesized in a high yield via a modified nickel-catalyzed cross-coupling reaction incorporating an anthracene unit and an o-carborane moiety. CAN exhibits multiple functions of tricolored mechanochromism and mechanically triggered thermochromism. The fluorescence could be switched from blue to bright yellow then to pink by grinding. The robust and reversible thermochromic process was triggered by the mechanical force. The locally excited (LE) state emission, intermolecular excimer formation and twisted intermolecular charge transfer (TICT) are the primary origins of this tricolor switching property. High temperature sensitivity of the heavily ground CAN powders contribute to the mechanical force induced TICT emission enhancement and color switching.

18.
Sensors (Basel) ; 17(11)2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29156627

RESUMO

The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 171: 149-154, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27504819

RESUMO

Four novel photochromic pyrazolones have been prepared by introducing halogen atoms as substituents on the benzene ring. All as-synthesized compounds exhibited excellent reversible photochromic performances in the solid state. Upon UV light irradiation, the as-synthesized compounds can change their structures from E-form to K-form with yellow coloration. Further processed by heating, they rapidly reverted to their initial states at 120°Ð¡. Their photo-response and thermal bleaching kinetics were detailed investigated by UV absorption spectra. The results showed that the time constants were higher than that of our previously reported compounds at least one order of magnitude and the rate constants of the as-synthesized compounds were significantly influenced by the size and electronegativity of different halogen atoms. The fluorescence emission were modulated in a high degree via photoisomerization of pyrazolones, which might be due to the efficient energy transfer from E-form to K-form isomers for their partly overlaps between their E-form absorption spectra and K-form fluorescence spectra.

20.
Photochem Photobiol Sci ; 15(10): 1222-1226, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27714301

RESUMO

We demonstrate a new strategy for designing reversibility, fatigue resistance and fluorescence switching materials, which are based on pyrazolone derivatives by introducing a pyridine ring. The reversible "on" and "off" modulation of fluorescence emission was up to 95% in the solid state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA